std::lognormal_distribution
From cppreference.com
                    
                                        
                    
                    
                                                            
                    |   Defined in header <random>
   | 
||
|   template< class RealType = double > class lognormal_distribution;  | 
(since C++11) | |
The lognormal_distribution random number distribution produces random numbers x > 0 according to a log-normal distribution:
- f(x; m,s) = 
exp⎛1 sx√2 π 
⎜
⎝-
⎞(ln x - m)2 2s2 
⎟
⎠ 
The parameter m is the mean and the parameter s the standard deviation.
Contents | 
[edit] Member types
| Member type | Definition | 
  result_type
 | 
RealType | 
  param_type
 | 
the type of the parameter set, unspecified | 
[edit] Member functions
|   constructs new distribution  (public member function)  | |
|    resets the internal state of the distribution   (public member function)  | |
 Generation | |
|    generates the next random number in the distribution   (public member function)  | |
 Characteristics | |
|    returns the distribution parameters   (public member function)  | |
|    gets or sets the distribution parameter object   (public member function)  | |
|    returns the minimum potentially generated value  (public member function)  | |
|    returns the maximum potentially generated value   (public member function)  | |
[edit] Non-member functions
|     compares two distribution objects   (function)  | |
|    performs stream input and output on pseudo-random number distribution   (function)  | |
[edit] Example
#include <iostream> #include <iomanip> #include <string> #include <map> #include <random> #include <cmath> int main() { std::random_device rd; std::mt19937 gen(rd()); std::lognormal_distribution<> d(1.6, 0.25); std::map<int, int> hist; for(int n=0; n<10000; ++n) { ++hist[std::round(d(gen))]; } for(auto p : hist) { std::cout << std::fixed << std::setprecision(1) << std::setw(2) << p.first << ' ' << std::string(p.second/200, '*') << '\n'; } }
Output:
2 3 *** 4 ************* 5 *************** 6 ********* 7 **** 8 * 9 10 11 12
[edit] External links
- Weisstein, Eric W. "Log Normal Distribution." From MathWorld--A Wolfram Web Resource.
 - Log-normal distribution. From Wikipedia.